3.5.62 \(\int x^3 (d+e x^2) (a+b \text {arccosh}(c x)) \, dx\) [462]

3.5.62.1 Optimal result
3.5.62.2 Mathematica [A] (warning: unable to verify)
3.5.62.3 Rubi [A] (verified)
3.5.62.4 Maple [A] (verified)
3.5.62.5 Fricas [A] (verification not implemented)
3.5.62.6 Sympy [F]
3.5.62.7 Maxima [A] (verification not implemented)
3.5.62.8 Giac [F(-2)]
3.5.62.9 Mupad [F(-1)]

3.5.62.1 Optimal result

Integrand size = 19, antiderivative size = 161 \[ \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx=-\frac {b \left (9 c^2 d+5 e\right ) x \sqrt {-1+c x} \sqrt {1+c x}}{96 c^5}-\frac {b \left (9 c^2 d+5 e\right ) x^3 \sqrt {-1+c x} \sqrt {1+c x}}{144 c^3}-\frac {b e x^5 \sqrt {-1+c x} \sqrt {1+c x}}{36 c}-\frac {b \left (9 c^2 d+5 e\right ) \text {arccosh}(c x)}{96 c^6}+\frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x)) \]

output
-1/96*b*(9*c^2*d+5*e)*arccosh(c*x)/c^6+1/4*d*x^4*(a+b*arccosh(c*x))+1/6*e* 
x^6*(a+b*arccosh(c*x))-1/96*b*(9*c^2*d+5*e)*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/ 
c^5-1/144*b*(9*c^2*d+5*e)*x^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^3-1/36*b*e*x^5 
*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c
 
3.5.62.2 Mathematica [A] (warning: unable to verify)

Time = 0.13 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.87 \[ \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx=\frac {24 a c^6 x^4 \left (3 d+2 e x^2\right )-b c x \sqrt {-1+c x} \sqrt {1+c x} \left (15 e+c^2 \left (27 d+10 e x^2\right )+2 c^4 \left (9 d x^2+4 e x^4\right )\right )+24 b c^6 x^4 \left (3 d+2 e x^2\right ) \text {arccosh}(c x)-6 b \left (9 c^2 d+5 e\right ) \text {arctanh}\left (\sqrt {\frac {-1+c x}{1+c x}}\right )}{288 c^6} \]

input
Integrate[x^3*(d + e*x^2)*(a + b*ArcCosh[c*x]),x]
 
output
(24*a*c^6*x^4*(3*d + 2*e*x^2) - b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(15*e + 
 c^2*(27*d + 10*e*x^2) + 2*c^4*(9*d*x^2 + 4*e*x^4)) + 24*b*c^6*x^4*(3*d + 
2*e*x^2)*ArcCosh[c*x] - 6*b*(9*c^2*d + 5*e)*ArcTanh[Sqrt[(-1 + c*x)/(1 + c 
*x)]])/(288*c^6)
 
3.5.62.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.98, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {6371, 27, 960, 111, 27, 101, 43}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx\)

\(\Big \downarrow \) 6371

\(\displaystyle -\frac {1}{24} b c \int \frac {2 x^4 \left (2 e x^2+3 d\right )}{\sqrt {c x-1} \sqrt {c x+1}}dx+\frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{12} b c \int \frac {x^4 \left (2 e x^2+3 d\right )}{\sqrt {c x-1} \sqrt {c x+1}}dx+\frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 960

\(\displaystyle -\frac {1}{12} b c \left (\frac {1}{3} \left (\frac {5 e}{c^2}+9 d\right ) \int \frac {x^4}{\sqrt {c x-1} \sqrt {c x+1}}dx+\frac {e x^5 \sqrt {c x-1} \sqrt {c x+1}}{3 c^2}\right )+\frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 111

\(\displaystyle -\frac {1}{12} b c \left (\frac {1}{3} \left (\frac {5 e}{c^2}+9 d\right ) \left (\frac {\int \frac {3 x^2}{\sqrt {c x-1} \sqrt {c x+1}}dx}{4 c^2}+\frac {x^3 \sqrt {c x-1} \sqrt {c x+1}}{4 c^2}\right )+\frac {e x^5 \sqrt {c x-1} \sqrt {c x+1}}{3 c^2}\right )+\frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{12} b c \left (\frac {1}{3} \left (\frac {5 e}{c^2}+9 d\right ) \left (\frac {3 \int \frac {x^2}{\sqrt {c x-1} \sqrt {c x+1}}dx}{4 c^2}+\frac {x^3 \sqrt {c x-1} \sqrt {c x+1}}{4 c^2}\right )+\frac {e x^5 \sqrt {c x-1} \sqrt {c x+1}}{3 c^2}\right )+\frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 101

\(\displaystyle -\frac {1}{12} b c \left (\frac {1}{3} \left (\frac {5 e}{c^2}+9 d\right ) \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {c x-1} \sqrt {c x+1}}dx}{2 c^2}+\frac {x \sqrt {c x-1} \sqrt {c x+1}}{2 c^2}\right )}{4 c^2}+\frac {x^3 \sqrt {c x-1} \sqrt {c x+1}}{4 c^2}\right )+\frac {e x^5 \sqrt {c x-1} \sqrt {c x+1}}{3 c^2}\right )+\frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 43

\(\displaystyle \frac {1}{4} d x^4 (a+b \text {arccosh}(c x))+\frac {1}{6} e x^6 (a+b \text {arccosh}(c x))-\frac {1}{12} b c \left (\frac {1}{3} \left (\frac {3 \left (\frac {\text {arccosh}(c x)}{2 c^3}+\frac {x \sqrt {c x-1} \sqrt {c x+1}}{2 c^2}\right )}{4 c^2}+\frac {x^3 \sqrt {c x-1} \sqrt {c x+1}}{4 c^2}\right ) \left (\frac {5 e}{c^2}+9 d\right )+\frac {e x^5 \sqrt {c x-1} \sqrt {c x+1}}{3 c^2}\right )\)

input
Int[x^3*(d + e*x^2)*(a + b*ArcCosh[c*x]),x]
 
output
(d*x^4*(a + b*ArcCosh[c*x]))/4 + (e*x^6*(a + b*ArcCosh[c*x]))/6 - (b*c*((e 
*x^5*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(3*c^2) + ((9*d + (5*e)/c^2)*((x^3*Sqrt 
[-1 + c*x]*Sqrt[1 + c*x])/(4*c^2) + (3*((x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/( 
2*c^2) + ArcCosh[c*x]/(2*c^3)))/(4*c^2)))/3))/12
 

3.5.62.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 43
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
ArcCosh[b*(x/a)]/(b*Sqrt[d/b]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a 
*d, 0] && GtQ[a, 0] && GtQ[d/b, 0]
 

rule 101
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[b*(a + b*x)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + 
 p + 3))), x] + Simp[1/(d*f*(n + p + 3))   Int[(c + d*x)^n*(e + f*x)^p*Simp 
[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f 
*(n + p + 4) - b*(d*e*(n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, 
 c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]
 

rule 111
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]
 

rule 960
Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.) 
*(x_)^(non2_.))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^( 
m + 1)*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(b1*b2*e*(m + n 
*(p + 1) + 1))), x] - Simp[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/ 
(b1*b2*(m + n*(p + 1) + 1))   Int[(e*x)^m*(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n 
/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] && EqQ[non2, 
 n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[m + n*(p + 1) + 1, 0]
 

rule 6371
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x 
_)^2), x_Symbol] :> Simp[d*(f*x)^(m + 1)*((a + b*ArcCosh[c*x])/(f*(m + 1))) 
, x] + (Simp[e*(f*x)^(m + 3)*((a + b*ArcCosh[c*x])/(f^3*(m + 3))), x] - Sim 
p[b*(c/(f*(m + 1)*(m + 3)))   Int[(f*x)^(m + 1)*((d*(m + 3) + e*(m + 1)*x^2 
)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, 
x] && NeQ[c^2*d + e, 0] && NeQ[m, -1] && NeQ[m, -3]
 
3.5.62.4 Maple [A] (verified)

Time = 0.38 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.34

method result size
parts \(a \left (\frac {1}{6} e \,x^{6}+\frac {1}{4} d \,x^{4}\right )+\frac {b \left (\frac {c^{4} \operatorname {arccosh}\left (c x \right ) e \,x^{6}}{6}+\frac {\operatorname {arccosh}\left (c x \right ) c^{4} x^{4} d}{4}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (18 c^{5} d \sqrt {c^{2} x^{2}-1}\, x^{3}+8 e \sqrt {c^{2} x^{2}-1}\, c^{5} x^{5}+27 d \,c^{3} x \sqrt {c^{2} x^{2}-1}+10 e \,c^{3} x^{3} \sqrt {c^{2} x^{2}-1}+27 d \,c^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )+15 e c x \sqrt {c^{2} x^{2}-1}+15 e \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )\right )}{288 c^{2} \sqrt {c^{2} x^{2}-1}}\right )}{c^{4}}\) \(215\)
derivativedivides \(\frac {\frac {a \left (\frac {1}{4} c^{6} d \,x^{4}+\frac {1}{6} c^{6} e \,x^{6}\right )}{c^{2}}+\frac {b \left (\frac {\operatorname {arccosh}\left (c x \right ) d \,c^{6} x^{4}}{4}+\frac {\operatorname {arccosh}\left (c x \right ) e \,c^{6} x^{6}}{6}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (18 c^{5} d \sqrt {c^{2} x^{2}-1}\, x^{3}+8 e \sqrt {c^{2} x^{2}-1}\, c^{5} x^{5}+27 d \,c^{3} x \sqrt {c^{2} x^{2}-1}+10 e \,c^{3} x^{3} \sqrt {c^{2} x^{2}-1}+27 d \,c^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )+15 e c x \sqrt {c^{2} x^{2}-1}+15 e \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )\right )}{288 \sqrt {c^{2} x^{2}-1}}\right )}{c^{2}}}{c^{4}}\) \(225\)
default \(\frac {\frac {a \left (\frac {1}{4} c^{6} d \,x^{4}+\frac {1}{6} c^{6} e \,x^{6}\right )}{c^{2}}+\frac {b \left (\frac {\operatorname {arccosh}\left (c x \right ) d \,c^{6} x^{4}}{4}+\frac {\operatorname {arccosh}\left (c x \right ) e \,c^{6} x^{6}}{6}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (18 c^{5} d \sqrt {c^{2} x^{2}-1}\, x^{3}+8 e \sqrt {c^{2} x^{2}-1}\, c^{5} x^{5}+27 d \,c^{3} x \sqrt {c^{2} x^{2}-1}+10 e \,c^{3} x^{3} \sqrt {c^{2} x^{2}-1}+27 d \,c^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )+15 e c x \sqrt {c^{2} x^{2}-1}+15 e \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )\right )}{288 \sqrt {c^{2} x^{2}-1}}\right )}{c^{2}}}{c^{4}}\) \(225\)

input
int(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x,method=_RETURNVERBOSE)
 
output
a*(1/6*e*x^6+1/4*d*x^4)+b/c^4*(1/6*c^4*arccosh(c*x)*e*x^6+1/4*arccosh(c*x) 
*c^4*x^4*d-1/288/c^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(18*c^5*d*(c^2*x^2-1)^(1/ 
2)*x^3+8*e*(c^2*x^2-1)^(1/2)*c^5*x^5+27*d*c^3*x*(c^2*x^2-1)^(1/2)+10*e*c^3 
*x^3*(c^2*x^2-1)^(1/2)+27*d*c^2*ln(c*x+(c^2*x^2-1)^(1/2))+15*e*c*x*(c^2*x^ 
2-1)^(1/2)+15*e*ln(c*x+(c^2*x^2-1)^(1/2)))/(c^2*x^2-1)^(1/2))
 
3.5.62.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.84 \[ \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx=\frac {48 \, a c^{6} e x^{6} + 72 \, a c^{6} d x^{4} + 3 \, {\left (16 \, b c^{6} e x^{6} + 24 \, b c^{6} d x^{4} - 9 \, b c^{2} d - 5 \, b e\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (8 \, b c^{5} e x^{5} + 2 \, {\left (9 \, b c^{5} d + 5 \, b c^{3} e\right )} x^{3} + 3 \, {\left (9 \, b c^{3} d + 5 \, b c e\right )} x\right )} \sqrt {c^{2} x^{2} - 1}}{288 \, c^{6}} \]

input
integrate(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x, algorithm="fricas")
 
output
1/288*(48*a*c^6*e*x^6 + 72*a*c^6*d*x^4 + 3*(16*b*c^6*e*x^6 + 24*b*c^6*d*x^ 
4 - 9*b*c^2*d - 5*b*e)*log(c*x + sqrt(c^2*x^2 - 1)) - (8*b*c^5*e*x^5 + 2*( 
9*b*c^5*d + 5*b*c^3*e)*x^3 + 3*(9*b*c^3*d + 5*b*c*e)*x)*sqrt(c^2*x^2 - 1)) 
/c^6
 
3.5.62.6 Sympy [F]

\[ \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx=\int x^{3} \left (a + b \operatorname {acosh}{\left (c x \right )}\right ) \left (d + e x^{2}\right )\, dx \]

input
integrate(x**3*(e*x**2+d)*(a+b*acosh(c*x)),x)
 
output
Integral(x**3*(a + b*acosh(c*x))*(d + e*x**2), x)
 
3.5.62.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.22 \[ \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx=\frac {1}{6} \, a e x^{6} + \frac {1}{4} \, a d x^{4} + \frac {1}{32} \, {\left (8 \, x^{4} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {2 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{2}} + \frac {3 \, \sqrt {c^{2} x^{2} - 1} x}{c^{4}} + \frac {3 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{5}}\right )} c\right )} b d + \frac {1}{288} \, {\left (48 \, x^{6} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {8 \, \sqrt {c^{2} x^{2} - 1} x^{5}}{c^{2}} + \frac {10 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{4}} + \frac {15 \, \sqrt {c^{2} x^{2} - 1} x}{c^{6}} + \frac {15 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{7}}\right )} c\right )} b e \]

input
integrate(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x, algorithm="maxima")
 
output
1/6*a*e*x^6 + 1/4*a*d*x^4 + 1/32*(8*x^4*arccosh(c*x) - (2*sqrt(c^2*x^2 - 1 
)*x^3/c^2 + 3*sqrt(c^2*x^2 - 1)*x/c^4 + 3*log(2*c^2*x + 2*sqrt(c^2*x^2 - 1 
)*c)/c^5)*c)*b*d + 1/288*(48*x^6*arccosh(c*x) - (8*sqrt(c^2*x^2 - 1)*x^5/c 
^2 + 10*sqrt(c^2*x^2 - 1)*x^3/c^4 + 15*sqrt(c^2*x^2 - 1)*x/c^6 + 15*log(2* 
c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^7)*c)*b*e
 
3.5.62.8 Giac [F(-2)]

Exception generated. \[ \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx=\text {Exception raised: TypeError} \]

input
integrate(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.5.62.9 Mupad [F(-1)]

Timed out. \[ \int x^3 \left (d+e x^2\right ) (a+b \text {arccosh}(c x)) \, dx=\int x^3\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\left (e\,x^2+d\right ) \,d x \]

input
int(x^3*(a + b*acosh(c*x))*(d + e*x^2),x)
 
output
int(x^3*(a + b*acosh(c*x))*(d + e*x^2), x)